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Abstract--Generally, if a probe is used to measure the size of a bubble or void in a multiphase system, 
the probe intersects the bubble with a chord length other than the diameter of the largest vertical chord 
length of the bubble. This matter is further complicated by the fact that there is a distribution of bubble 
sizes in most systems. From geometric reasoning, the expected probability distribution of measured chord 
sizes from a given bubble diameter is deduced and the relationship between bubble size distributions and 
chord length distributions explored. All one need know to evaluate these relationships is the fundamental 
bubble shape. 
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INTRODUCTION 

Probes are used widely in the study of multiphase systems, particularly gas-liquid flows and 
fluidized beds. One use of probes is to measure the diameter of bubbles in the system. This 
measurement may be made directly using dual hydrostatic pressure probes (Atkinson & Clark 
1986a, 1987) provided that pressure distributions around the bubble are known. Otherwise, chord 
length can be inferred using a single probe, such as a resistance probe in gas-liquid flows and bubble 
columns (Serizawa et al. 1975; Sekoguchi et al. 1975; Burgess et al. 1981; Koide et al. 1979) if the 
velocity of the bubble is known. Pairs of probes, situated one downstream of the other in the 
direction of bubble movement, employing data processing, have also been used in gas-liquid 
systems (Herringe & Davis 1978). Optical probes have been used in a similar fashion to resistance 
probes to measure multiphase flow properties (Galaup 1975; Buchholz et al. 1981), while Flemmer 
(1984) has proposed and tested a new type of pneumatic probe to detect voids in fluidized beds. 
Probes have been discussed in more detail in reviews by Gunn & AI-Doori (1985), Atkinson & 
Clark (1986b), Werther & Molerus (1973), Cheremisinoff (1986) and Fitzgerald (1979), and in the 
thesis of Galaup (1975). 

In all of these probe measurements, the probes do not always intersect the bubble at its center: 
a chord length smaller than the largest vertical bubble dimension is typically measured. This paper 
relates the distribution of chord lengths measured to the size distribution of bubbles affecting the 
probe and offers techniques for transforming the chord length distribution into the actual bubble 
diameter distribution. Most previous studies have considered only average chord lengths in the 
system and have not related the two distributions--this is discussed by Cheremisinoff (1986). 
Exceptions are Yamashita et al. (1979), who presented an analysis similar to that developed below 
for bubbles which approximate canted ellipsoids, and Werther & Molerus (1973) and Werther 
(1974a, b), who analyzed capacitance probe signals in fluidized beds. 

ANALYSIS 

Consider a swarm of gas bubbles rising through a liquid or dense phase medium. A probe is 
operated amidst the bubbles. Let the size distribution of bubbles which intersect the probe be given 
by the probability density function P(R) .  Note that this distribution of bubble sizes touching the 
probe is not equal to the distribution of bubble sizes in the system, Ps(R), because, all else being 
equal, the larger the bubble size the greater will be the number of bubbles which influence the probe. 
These two distributions are related by a weighting function, proportional to R 2. Further work in 
this paper refers to both of these distributions, which must be distinguished carefully by the reader. 
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Figure 1. View from above of  a bubble of  radius R rising past a probe. The bubble will intersect the probe 
if its center is a distance < R from the probe. 

Now consider the interaction of bubbles of a particular size, R, with the probe tip. Let the center 
of one of these bubbles be a distance, r, from the probe tip, as shown in figure 1. This bubble will 
intersect the probe tip if r lies between zero and the radius of the bubble, R. A large number of 
bubbles of size R intersect the tip over a long period of time and it is assumed that bubble centers 
are uniformly distributed throughout the system, or at least within a cylinder of radius R from the 
probe tip. Therefore, over a long period of time, the number of bubble centers passing through 
a small annulus dr wide and radius r from the probe tip increases in direct proportion to r. We 
conclude that the probability density function for the distance between bubble centers and the 
probe tip is in direct proportion to the distance r. Hence, 

P(rlR)=ar, O<~r <~R, 

P(rIR) = 0, otherwise. [1] 

P (rfR) is a conditional distribution of r given a value of R. The function P (r[R), when integrated 
over some range of r, is effectively the number of bubbles of size R intersecting the probe at a 
distance in that range, divided by the total number intersecting the probe. Since P(rlR) is a 
probability density function, a has the value 2/R 2. 

Next, we must assume some functional size-independent shape for the bubbles. This allows us 
to predict the vertical chord length, y, that the probe will cut for a given value of r. We assume 
that all bubbles rise vertically (see figure 2). 

Since 

y = f ( r )  [2] 

we can determine the probability density function which describes the likelihood of finding a chord 
length y for a specified bubble size R: 

P(yIR)= P(rIR) ~y 

2r d_~y . 
= R ~ "  [31 

The integral of P (y I R) over all possible chord lengths for bubbles of specified size R must be unity. 
The analysis offered thus far applies to a population of bubbles of the same size which touch the 
probe. Next we will consider the population of bubbles of all sizes which touch the probe, given 
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Figure 2. The vertical chord length, y, intersected by the probe, can be determined if the shape of the 
bubble and the distance from the bubble axis to the probe tip are known. (a) The shape illustrated here 
is the top greater section of an ellipsoid, representing a fluidized bed bubble. (b) The top lesser section 

of an ellipsoid represents a gas-liquid cap bubble. Notation for the text is provided in this figure. 

by the probability density function P(R).  Considering this whole distribution, the probability that 
a bubble of size R will intersect the probe with a chord length y is then given by 

P(y, R) = P ( y l R ) P ( R ) .  [4] 

The probability of measuring a particular chord length y for any bubble size R in the system is 

P(y)= P(y,R)dR 

= P ( R ) P ( y [ R ) d R .  [51 

In practice the lower limit can be replaced by zero, and the upper by the largest bubble radius in 
the system, Rmax. Equations [5] allows us to find the distribution of chord lengths, P (y), for a given 
distribution of bubble sizes touching the probe, P(R),  provided that we know the bubble shape 
as given by [2]. An approximate scheme which allows us to reverse this procedure is discussed 
toward the end of this paper. Although [3] and [5] appear simple, they have fundamental 
implications in the analysis of specific bubble shapes and size distributions, as shown below. 

SPECIFIC BUBBLE SHAPES 

Several axisymmetic geometric shapes are considered in this paper as approximations of real 
bubbles found in multiphase systems. Some examples of the shapes of real bubbles are given below: 

(i) Small spherical bubbles of gas are found in gas-liquid systems and liquid drops 
found in immiscible liquid-liquid systems. Both are modeled as spheres, and 
have been discussed by authors such as Batchelor (1977), Govier & Aziz (1972) 
and Harmathy (1960). 

(ii) Larger bubbles (over 1.5 mm dia in air-water systems) assume the shape of an 
oblate spheroid or an ellipsoid, with a larger horizontal than axial dimension 
(Harmathy, 1960). These are modeled as ellipsoids. 

(iii) Very large bubbles in liquids are cap-shaped (Hills 1975; Batchelor 1977). These 
can be modeled as the top lesser section of an ellipsoid or sphere. 

(iv) In fluidized beds the bubble shape is often termed "spherical cap" [Werther 
(1974a) illustrates this] and is well-modeled by the top greater section of a 
sphere or ellipsoid, as shown in figure 2. The treatment of this general shape 
is the most difficult of all those mentioned above and receives greater attention 
than the others in the text which follows. 

No attempt is made to model the shape of splitting or coalescing bubbles or of irregular voids 
found in gas-liquid froth flows (Taitel et al. 1980; Clark & Flemmer 1984). Data interpretation 
in such circumstances would be very difficult since the shape is not well-defined. 
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Let us consider a population of bubbles of known shape and of single size R. The shape chosen 
for analysis is the ellipsoid since it represents the most general, simply shaped bubble that one is 
likely to detect. The derivation of P(yIR)  for the greater upper section of the ellipsoid is given 
below and the results for other shapes are given in table 1. 

Using the notation given in figure 2 we can write: 

~ r O ~ r < k R ,  

r2=R211 - ( -  ~ - I~ - - -~ -  k 921 

r 2 = R  2 1 -  Y where 

and for kR<~r<~R, (,,2) 
r 2 = R 2 1 4~-R2 ; 

therefore 

dy 2r 4 ~  ~ = 4c~2r ' 

Q =~/1 -k2 ;  

kR <r <.R, 

= - -  - 2  Y 1 
2r ctRr 

Substituting [6] and [1] into [3] gives 

Y 
P(y  IR) = 2~2R 2, 0 <~ y < 2ctQR, 

0 <~ r <~ kR. [6] 

2 
=ot2R2(y - ~ R Q ) ,  2~QR <<,y ~<~R(1 +Q) ,  [7] 

= 0, otherwise. 

The conditional distributions for other bubble shapes are given in table 1. 
The conditional distributions given in table 1 are also plotted in figures 3(a) and 3(b). It is 

interesting to note that for the greater upper sections of the ellipsoid and sphere there is a 
discontinuity in the conditional distribution. This step change in probability is expected since the 
value of dy/dr changes at this point, causing a step change in the probability density function. 

Relationships Between Bubble Size and Chord Length Distributions 

The object of this paper is to investigate the relationship between measured chord lengths and 
true bubble sizes. The ultimate goal is to be able to predict bubble size distributions for measured 
chord length distributions. This problem is addressed in the section concerning the backward 
transform. The following section focuses on the forward transform. This explains how the 
distribution of chord lengths can be generated with knowledge of the bubble shape and bubble size 
distribution. 

Forward transform 
Equation [5] provides the techniques for deducing the distribution of chord lengths for a given 

size distribution of bubbles affecting the probe. For the sake of simplicity we will assume that all 
the bubbles are geometrically similar and can be characterized by a single size parameter along with 
certain shape parameters (assumed constant for a given experiment). To demonstrate the procedure 
we will consider bubbles which can be approximated by the greater upper section of an ellipsoid 
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Table 1. Conditional chord length distributions for various shapes of  bubble 
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Bubble shape Parameters Conditional chord length distribution 

Greater top section y 
of  an ellipsoid P(y IR) = 0 ~< y < 2ctQR 2~t2R 2 

2(y - ~RQ) 
P(y[R) ~ 2 R 2  2ctQR<~y<~R(I+Q) 

Ellipsoid Q = 1 (k ---0) P(yIR)= Y O~ v ~2ctR 
2a2R 2 

Y O~y < 2QR Greater top section :t = 1 P(y I R ) -  2R 2 
of a sphere 

2(y - RQ) 
P(Y lR) -  R 2 2 Q R ~ y ~ R ( I + Q )  

Sphere a = l ,  Q = I  ( k = 0 )  P(yIR) = y O ~ y ~ 2 R  
2R: 

Lesser top section 2(y + ctRQ) 
of  an ellipsoid P(y[R) ~2R2(1 _ Q 2 )  0~<y ~<ctR(1 - Q )  

2(y + RQ) 
Lesser top section ct = I P(y JR) R2(I _ Q2) 0 ~< y ~< R(1 - Q) 

of  a sphere 

2y 
Hemi ellipsoidal Q = 0 (k = I) P(y JR) - ~2R2 0 ~< y ~< ctR 

spherical ct = 1, Q ---0 (k = 1) P(Y IR)= ~ 0 ~<y ~< R Hemi 

and we will further assume that the bubbles affecting the probe are uniformly distributed in size 
from 0 to Rmax. 

Thus 

and from [5] 

1 

P(R)=Rm.x, O<~R ~R . . . .  

~_ c 

P(y )=  P(ylR)P(R)dR.  
Zt3 

The above integral must be integrated in parts which may not be straightforward. The reason for 
this is that a chord length of a given size may come from the middle section of a small bubble or 
from the outer section of a large bubble. Figures 4(a) and 4(b) illustrate this method of solution. 

2//~R 

P(Y / R) 2Q]aR 

C~a R 

~(:;~ aR0+a) 

Y 

2 2 
c~R( I-Q ) 

20 
c(R( I .Q2) 
J 

¢(R(t-Q) 
y.. 

(a) (b) 
Figure 3. Plots of  conditional distributions given in table 1. (a) Derived from the greater top section of  

an ellipsoid. (b) Derived from the lesser top section of  an ellipsoid. 
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.................................... j  Rmax/,+O> 

Y ~ ' f " ' f  ~ Region II 
2o~QRmax 

Region III 

Rmax 
R 

(a) (b) 
Figure 4. Relationships between chord lengths and bubble radius: (a) inner and outer regions of a bubble; 

(b) feasibility diagram. 

Figure 4(a) represents the bubble with two outer sections (B) and one middle section (A). Figure 
4(b) is a feasibility diagram for occurrence of chord length y vs bubble size R. The feasible region 
must be broken up into three regions: 

I: represents the region from which chord lengths > 20CQRma x come from the 
middle section (A) of the bubble; 

II: represents the region from which chord lengths < 2~QRmax come from the 
middle section (A) of the bubble; 

III: represents the region from which chord lengths < 2ctQRmax come from the outer 
sections (B) of the bubble 

Substituting the appropriate limits in [5] we obtain: 

region I, 

region II, 

region III, 

I Rmax 2 1 
P ( Y ) =  ~Rs(.V -°tRQ)~m~x dR; 

d:'/~d + Q) 

f y/2otQ 2 
P(y) = ~2R2(Y - aRO)-RmaldR; 

d y/c~(I + Q) 

[81 

[9] 

P ( y )  = 2-5~ma x 2~(1 - Q) + ~Q 2Rmax 

1 [2~(1 
P(y) - ~2Rmax 2y 2~Q In ~Rmax(1 + Q ) ]  2OtRmax<<.y~otRm,x(l+Q). [11] 

+ Q) - Rma---- ~ - y J '  

2c~Q In ( ~ Q Q ) ] ,  0~<y < 2~RmaxQ, 

Equation [1 1] represents the distribution of chord lengths (y) resulting from sampling bubbles 
with the shape of the greater upper section of an ellipsoid, and assuming the bubbles to be 
uniformly distributed in the region of the probe. 

Results for other bubble shapes are given in table 2, along with the results for the case when 
bubbles are uniformly distributed across the bed. For this latter case 

1 
Ps(R)=Rmax, O~ R ~ R . . . .  

Performing the integrations in [8]-[10] and combining we obtain 

I Rmax y 1 
P(y) = - -  dR. [10] 

.)y/2aQ 2~2R2 Rmax 
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and 

3R 2 
P ( R ) =  3 , 0~R~Rm~x [12] 

R rnax 

(assuming R~ax < Rb~d/2). 

We are in no way restricted to using uniform bubble size distributions since the definition in [5] 
is quite general. However the integrations required to evaluate P(y) become increasingly more 
complex for more complicated bubble size distributions. For example, if P(R) is a triangular 
distribution then to obtain P (y) for the greater upper section of an ellipsoid the integration requires 
the evaluation of 7 or 8 separate integrals. At this point it is more convenient to evaluate the 
distributions numerically. 

Backward transform 
We now focus on the problem of generating the bubble size distribution P(R) given the 

distribution of chord lengths P(y). In practice we will always measure the distribution of chord 
lengths and try to deduce the bubble size distribution, hence the backward transform is of great 
importance in experimental data analysis. 

It should be pointed out that the true bubble size distribution is never (or rarely ever) known. 
For well-behaved distributions the following approximate method will yield satisfactory results. 
There are, however, problems with some distributions and these are discussed briefly at the end 
of this section. 

Consider a set of data consisting of n observations of chord lengths y. Let us divide the chord 
lengths into m equal length partitions such that 

y~=Ymax-(i+½) Ay, 0~<i~<m-1 ,  

where 

Ay = Ymax 
m 

Then an approximation to the probability of finding a chord length y between Yi and yi+,, 
W(yi<y <yi+,),  is given by 

W(yi<y <Yi+l) = Number of observations of chord lengths between y~ and Yi+l [13] 
Total number of observations, n 

From [5] we have 

W(yi<y <y/+,)  = £Y'+' 
'i 

Hence 

~ i + I I Rmax 
P(y) dy = P(ylR)P(R) dR dy 

'l J O 

= P(y[R)P(R)dR + (P(ylR)P(R)dR + ... 
t JRm -I 

f R ~ O ? ~  'i+lm-I + P(ylR)P(R)dR dye- ~ P(ylRjlP(Rj)ARdy 
, j = O  

--~ ~ '  ~y Vi+l e(y IRj) dy P(Rj)AR. 
j = 0  i 

m - I  

Wi= W(y,< y <~y,+t)~- ~, C,,jP(Rj)AR, 
j=O  

[141 
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where 

and 

with 

f Y~ + 1 
Cij = P ( y I R j )  dy  

'i 

Rj = R m a  x -jAR, 0 <~j <<. m - 1, 

AR = Rmax _ Ymax 

m c~(1 + Q)m" 
Equation [14] can be used to construct the following triangular matrix form: 

Wo = Co, o P ( & ) A R  

w, = C,,oP(P,o),aR + C, , ,P (R, )aR 

Wrn_ I = Cm_ I ,oP(Ro)AR 'JI- C m I . , P ( R I ) A R  -.I-"'-.I.- C,,,_ I.,,,_ ,P(R,,,_ , )AR. 

The triangularity occurs because Cij is zero when i < j ,  i.e. a chord length yi can only  come from 
a bubble o f  radius R~ or greater (R~_ ~, R~_ 2 etc.). For a known bubble shape C~.j is known and 

0.20 
0.19 
0.16 
0.17 
0.16 
0.15 
0.14 
0.13 
0.12 
0.11 
0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

• 3818 .7635 1.14 1.52 1.90 2.29 2.67 3.05 3.43 3.81 

y 

(a) 

0.40 
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(3 ,4 .0 )  
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3.617 4.294 4.772 5.000 

Figure 5. A simulated experiment was used to verify the back transform scheme: (a) the generated 
probability histogram of  chord lengths; (b) the original bubble size distribution (used to generate the chord 

lengths) and the size distribution found from the chord length distribution are compared. 
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the I4",. are calculated from the chord length data. Thus the above matrix can be solved sequentially 
to yield the unknown P(R~). More sophisticated solution algorithms are certainly possible but the 
equations given above will yield accurate results provided that the intervals between between Yt, 
Y2 etc. are not too small. 

Illustrative example 

Five thousand chord length observations were generated synthetically using Monte Carlo 
simulation. A triangular bubble size distribution was assumed with mode = 3 and range 0 ~< R ~< 5: 
Bubble shape was assumed to be the greater upper section of an ellipsoid with ct = 0.5 and k = 0.8. 
The generated distribution of chord lengths is shown in figure 5(a). The backward transformation 
was carried out on the data and the resulting probability density function for R is compared with 
the actual bubble size distribution in figure 5(b). This comparison of the actual distribution and 
the backward transformation is good and illustrates the utility of this technique. 

This worked example with 10 subdivisions in bubble size gives accurate results. If the number 
of subdivisions is increased beyond a certain point then for a fixed sample size of chord lengths 
the backward transform becomes unstable yielding irregular and sometimes negative P (R) values. 
This instability results from the fact that for each subdivision there must exist a representative 
number of data points within the region. Therefore if one requires more subdivisions then one must 
take more data. 

Very irregular (multimodal) bubble size distributions may occur in practice and these can be 
difficult to treat using the above backward transform. The presence of multimodal features in the 
chord length distribution would nearly always occur in these cases and thus inspection of the raw 
data can give insight into such problems. 
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